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Hans-René Bjørsvik*

Department of Chemistry, UniVersity of Bergen, Alle´gaten 41, N-5007 Bergen, Norway

Abstract:
Multivariate modeling and spectroscopy taken together con-
stitute a powerful tool applicable to both process monitoring
and to process and reaction optimizing. The present article
establishes how near-IR spectroscopy utilizing a fiber-optical
transmission probe can be combined with principal component
analysis to extract concentration profiles from a set of spectra
recorded during the course of a reaction. Moreover, it is
demonstrated how to easily determine the end-point (optimized
reaction time, that is, the minimized time) of a reaction, and a
simple calibration for quantitative analysis is demonstrated.

Introduction

Experimental design1-3 and multivariate modeling4 have
during recent years become established research tools in
organic process research and development. Increased utiliza-
tion of computerized machines for parallel synthesis, dedi-
cated and automated equipment for reaction workup com-
bined with robotized chromatographic instrumentation for
the quantification of reaction mixtures has resulted in
extensive automation and speeding up of process develop-
ment and optimization. Even though online FT-IR spectros-
copy is currently utilized to some extent in research and
process development,5-10 a huge unused potential still exists
also to combine it with advanced computational techniques
for multivariate modeling and analysis. The combined
approach constituted by spectroscopy and multivariate
mathematical and statistical methods11 represents an ex-
tremely powerful tool that can provide new and highly useful
insight into the organic reaction or process under study. Near-

infrared (NIR) spectroscopy12,13 offers a vast unexploited
potential for monitoring organic reactions. Although the
combined methodology using NIR instrumentation and
multivariate mathematical methods gives good predictive
power for quantitative analysis,14 it has not become especially
widespread in the research and development of organic
processes and synthesis. This is most probably due to (i)
the difficulties in interpreting spectra recorded in the near-
infrared region, hence difficulties in extracting direct chemi-
cal information, and (ii) the apparent complexity of under-
standing the multivariate methods necessary for the multi-
variate data analysis.

However, I have previously demonstrated how the
combined technique of NIR spectroscopy and multivariate
methods can be successfully used to monitor synthetic
organic processes and to determine the shortest reaction time
(“the end point”) for the synthesis of 1-(ethoxycarbonyloxy)-
ethyl 5-acetylamido-3-(N-methylacetamido)-2,4,6-triiodoben-
zoate15 (Scheme 1a) and in the synthesis of 3-aminopropan-
1,2-diol16 (Scheme 1b). The later work demonstrated,
moreover, how the results from the multivariate calculations
based on only one quantitative analysis might be used as an
estimate for the production of the time-concentration profile
for the reaction.

Figure 1 shows schematically a fiber-optical near-IR
instrument connected to a transmission cell probe for
“directly-in-reactor” spectral recording. Such a setup was
used for the spectral recording in the present report as well
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as during the study of the processes shown in Scheme 1 and
previously reported by the author.15,16

This article will present and discuss a method using fiber-
optical near-infrared spectroscopy as the analytical technique,
multivariate data analysis using principal component analysis
as a monitoring and analyzing tool for organic reactions, and
some new ideas concerning how results from multivariate
data analysis can be used for elucidation of mechanistic
features of synthetic reactions and processes.

Methods and Results
Many new NIR instruments designed for application in

the chemical process industry have become commercially
available in recent years. Most of these instruments are built
for remote measurement using fiber optics in combination
with an assorted collection of transmission measurement
probes or cells, see Figure 1. Such an instrumental setup is
an excellent tool for nearly real-time monitoring of any
organic process, and permits remote measurements in, e.g.
hazardous environments or inside high-pressure equipment.

The combined method of multivariate modeling, using
principal component analysis, and online spectroscopy will
be illustrated by means of an imagined oxidation process.
This process is constituted by the partial oxidation of
ethylbenzene1 to an intermediate, acetophenone2, which
in a subsequent and last step is further oxidized to the
terminal product, benzoic acid3. The oxidation reaction is
conducted with ethyl acetate4 as reaction medium. The
imagined oxidation process is outlined in Scheme 2.

Let the imagined oxidation process be a consecutive first-
order reaction, where the rate constants arek1 ) 50.0× 10-3

andk2 ) 40.0× 10-2. The numerical values ofk1 andk2 for
the imagined process were selected for experimental con-
venience, as will be demonstrated later. The kinetic rate
model that describes a consecutive first-order reaction is
given by the eqs 1-3.

The integrated form of eq 1 yields:

The initial (timeτ ) 0) concentration of ethylbenzene1 is
[1]o. At any reaction timeτ ) θ is the concentration of the
substrate [1]θ . Substitution of eq 4 in eq 2 and then
integrating yields the rate equation for the intermediate
acetophenone2, thus:

For the final product, benzoic acid3, the expression for the
variation of concentration over the reaction time [3]τ can
easily be found, since [1]τ + [2]τ + [3]τ ) [1]o at any reaction
time τ during the course of the reaction. Hence, for the
imagined oxidation process, eq 6 gives the concentration-
time profile for the final product benzoic acid3.

Figure 1. General outline for a fiber-optical NIR spectrophotometer with a transmission probe (cell).

Scheme 2
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By using eqs 4-6, the numerical values selected fork1

and k2, and an initial concentration of the substrate1 of
[1]o ) 1 M one obtains the reaction profile outlined in Figure
2. The blue curve shows how the concentration of the
substrate ethylbenzene1 decreases over the course of the
reaction, while the red curve shows how the concentration

of the intermediate acetophenone2 first increases and then
decreases over the course of the reaction. The green curve
shows the concentration profile of the final product, benzoic
acid 3, over the course of the reaction.

Equations 4-6 were used to calculate the mass weight
for each of the substances1, 2, and3 for a reaction volume
of 100 mL when the start concentration of ethylbenzene1
is [1]o ) 1 M. The calculated quantities for the reaction times
τ ) 0, 1, 2, ..., 30, 60, are shown in the three columns
designated as1(c), 2(c), and3(c) in Table 1. The three columns
next to these shows the actual quantities of the compound
indicated as1(m), 2(m), and3(m) as measured on an analytical
laboratory balance. These mixtures were diluted with ethyl
acetate until the 100 mL mark of a measuring flask. The
NIR-spectra for all 32 solutions were recorded on a NIR
instrument equipped with a fibre optical transmission mea-
surement probe, see an outline of the instrumentation in
Figure 1. TheI ) 32 NIR spectra recorded from the “reaction
mixtures” listed in Table 1 were organized in such a way
that the first NIR spectrum, that corresponding to timeτ )
0 was placed in the first row of the data matrixXraw. The
next row was constituted by the NIR spectrum corresponding
to timeτ ) 1, the third row by the spectrum corresponding
to time τ ) 2, and so on until timeτ ) 30. In the very last

Table 1. Calculated and actual masses of the three analytes, ethylbenzene 1, acetophenone 2, and benzoic acid 3

calculated model values [g] measured values [g] score values calculated by means of PCAc

t 1(c) 2(c) 3(c) 1(m) 2(m) 3(m) t1 99.8716% t2 0.1276% t3 0.0006%

0a 10.6150 0.0000 0.0000 10.6136 0.0000 0.0000 -6.1806 -0.4338 -0.0317
1a 10.0973 0.4822 0.1055 10.1233 0.4842 0.1052 -6.2099 -0.4138 -0.0361
2a 9.6048 0.7818 0.3675 9.6081 0.7826 0.3678 -6.2181 -0.3965 -0.0160
3a 9.1364 0.9604 0.7249 9.1718 0.9610 0.7254 -6.2538 -0.3682 -0.0112
4a 8.6908 1.0588 1.1375 8.6921 1.0545 1.1375 -6.2869 -0.3384 -0.0032
5b 8.2670 1.1045 1.5787 8.2771 1.1048 1.5791 - - -
6a 7.8638 1.1159 2.0310 7.8938 1.1146 2.0319 -6.3961 -0.2645 0.0069
7 7.4803 1.1052 2.4831 7.4882 1.1051 2.4845 -6.4145 -0.2409 0.0143
8 7.1154 1.0806 2.9277 7.1155 1.0827 2.9279 -6.4570 -0.2094 0.0187
9 6.7684 1.0475 3.3606 6.7758 1.0460 3.3600 -6.5018 -0.1785 0.0222

10b 6.4383 1.0096 3.7789 6.4383 1.0105 3.7783 - - -
11b 6.1243 0.9692 4.1812 6.1540 0.9691 4.1810 - - -
12a 5.8256 0.9279 4.5668 5.8317 0.9294 4.5675 -6.6240 -0.0877 0.0247
13 5.5415 0.8866 4.9357 5.5478 0.8862 4.9360 -6.6517 -0.0637 0.0253
14 5.2713 0.8460 5.2878 5.2777 0.8507 5.2879 -6.6989 -0.0283 0.0088
15b 5.0142 0.8065 5.6237 5.0166 0.8075 5.6232 - - -
16 4.7696 0.7684 5.9438 4.8175 0.7663 5.9434 -6.7687 0.0174 0.0152
17 4.5370 0.7317 6.2487 4.5363 0.7310 6.2491 -6.8011 0.0384 0.0125
18a 4.3157 0.6966 6.5390 4.3222 0.6978 6.5392 -6.8233 0.0600 0.0145
19 4.1053 0.6630 6.8153 4.1160 0.6618 6.8147 -6.8642 0.0891 -0.0001
20 3.9050 0.6309 7.0782 3.9096 0.6303 7.0776 -6.8744 0.0990 0.0091
21 3.7146 0.6003 7.3285 3.7135 0.5995 7.3280 -6.9180 0.1254 -0.0020
22 3.5334 0.5711 7.5665 3.5481 0.5706 7.5660 -6.9378 0.1418 0.0019
23 3.3611 0.5433 7.7930 3.3610 0.5494 7.7932 -6.9724 0.1610 -0.0044
24a 3.1972 0.5169 8.0085 3.1969 0.5185 8.0085 -6.9771 0.1710 0.0007
25 3.0412 0.4917 8.2135 3.0442 0.4935 8.2134 -6.9907 0.1842 -0.0002
26 2.8929 0.4677 8.4084 2.9112 0.4700 8.4091 -7.0310 0.2068 -0.0107
27 2.7518 0.4449 8.5939 2.7624 0.4440 8.5946 -7.0297 0.2123 0.0004
28 2.6176 0.4232 8.7704 2.6428 0.4238 8.7703 -7.0493 0.2275 -0.0001
29 2.4900 0.4026 8.9382 2.4928 0.4007 8.9388 -7.0868 0.2501 -0.0130
30a 2.3685 0.3830 9.0979 2.3916 0.3850 9.0975 -7.0553 0.2301 -0.0115
60a 0.5285 0.0855 11.5171 0.0000 0.0000 12.2100 -7.4036 0.4877 -0.0348

a Values used for the curve fitting in Figures 5, 6, and 7, indicated by black-filled circles.b During the introductory PCA, the object was determined to be an outlier.
The object was thus removed from the data matrix before the final PCA was carried out.c The score values were estimated in a PC model constituted by three principal
components:a ) 1 (99.8716%),a ) 2 (0.1276%), anda ) 3 (0.0006%) explain 99.9997% of the total variance.

Figure 2. Reaction profile. The blue curve shows how the
concentration of the substrate ethylbenzene 1 changes over time.
The red curve shows how the concentration of the intermediate
product acetophenone 2 increases, and then decreases during
the course of the reaction. The green curve shows how the
concentration of the final product benzoic acid 3 increases over
time.
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row of the data table,Xraw, was placed the NIR spectrum of
a sample constituted only by the final product, benzoic acid
3, dissolved in the reaction medium ethyl acetate. This final
sample corresponds approximately17 to a reaction time of
τ ) 60. The final raw spectral data matrixXraw is constituted
by 32× 700 matrix elements (lines× variables)) 22 400
absorption measurements. The upper regions of the spectra
contain considerable noise due to light absorption from the
optical fibers. Hence, the spectral regionλ 2222-2498 nm
was removed from the raw NIR spectra data matrix,Xraw, to
leave the final spectra data matrixX. The final spectra data
matrix X thus contains the absorbances in the range 1100-
2220 nm, corresponding to a 32× 561 ) 17 952 element
spectra matrixX. The spectra matrixX is shown as a 3D
plot in Figure 3a, with the wavelength on thex-axis, the
reaction time on they-axis, and the absorbance along the
z-axis. From this figure, it is almost impossible to distinguish
between the spectra by visual inspection alone. The lower
section of Figure 3 shows the NIR spectra of the three
compounds1, 2, and3 as 1 M solutions in ethyl acetate.
Moreover the NIR spectrum of the solvent ethyl acetate is
included for the purpose of visual comparison.

Multivariate data analysis techniques18 can successfully
extract systematic differences from such a data matrix. In
this contribution, the principal component analysis (PCA)
method will be used for the purpose of analyzing the spectral
matrix X. A brief description of the PCA method will be
given below.

Principal Component Analysis (PCA).19,20 Every data
table displays two types of variation. The within-object
variation in the variables is displayed horizontally, while the
between-object variation in the variables is displayed verti-
cally. These features may be analyzed individually by means
of (PCA). The essence of the PCA method is that the
systematic variation can be represented by fewer variables,
the principal components, than the number of descriptor
variables present in the original data table. The number of
principal componentsa ) 1, ..., A, is usually much lower
than the number of original variables,k ) 1, ..., K, (A ,
K). In this article the number of variables (that is wave-
lengths) is K ) 561, whereas the number of principal
components is expected to be in the rangeA ) 2-4.

Figure 4 shows the matrixX that is composed ofI rows
(samples, often referred to as objects) andK columns
(variables, here the wavelengths in the spectrum). This matrix
describes a swarm ofI points in aK-dimensional space.
Figure 4 illustrates an example where the matrixX is
constituted byK ) 3 variables andI ) 17 objects (samples).
The essence of PCA is to fit a hyper-plane to the data of
matrix X. The hyper-plane can be of low dimension, e.g.

A ) 1, which implies that the data are described by a line in
the multidimensional space spanned by theK-variables in
matrix X. Figure 4 shows, however, a model withA ) 2
principal components. A dimensional reduction is thus carried
out from the original three variablesx1, x2, and x3 to two
principal component scorest1, andt2. The PC scorest1 and
t2 are the projections of the points onto the plane, see
Figure 4.

Mathematically, PCA involves a factorization of the
original data matrix X, into means (xjk), the principal
component scores (tia) which show the between-sample
variation, the principal component loadings (pak), which
describe the within-sample variation in the wavelengths, and
finally the residuals (eik), the noise in the data. The
mathematical description is shown in eq 7, where the

(17) Actually, atτ ) 60, both ethylbenzene1 as well as a very small quantity
of the intermediate acetophenone2 should remain according to the kinetic
models of eqs 4-6: the quantities are estimated to be 0.5285 g (0.0498
mol/L) (1) and 0.0855 g (0.0071 mol/L) (2), respectively.

(18) For an overview of methods used in chemistry see: Malinowski, E. R.Factor
Analysis in Chemistry, 3rd ed.; Wiley: New York, 2002.

(19) Jolliffe, I. T. Principal Component Analysis; Springer-Verlag: New York,
1986; pp 1-271.

(20) Jackson, J. E.A User’s Guide to Principal Components;Wiley: New York,
1991; pp 1-569.

Figure 3. (a) NIR spectra recorded in the region∆λ ) 1100-
2220 nm, over the course of the imagined reaction 1f 2 f 3,
τ ) 0, 1, 2, ..., 30 andτ ) 60. (b) The lower part of the plot
shows the NIR spectra of 1 M solutions of ethylbenzene (blue
line), acetophenone (red line), benzoic acid (green line), and
the spectrum of the pure solvent ethyl acetate (black line),
plotted to view the aspect and differences among the pure
components. The upper part of plot (b) shows the NIR spectra
of ethylbenzene (blue line), acetophenone (red line), and benzoic
aid (green line) when the contribution from the ethyl acetate is
removed, that is the difference spectra.

498 • Vol. 8, No. 3, 2004 / Organic Process Research & Development



parameterA denotes the number of significant principal
components determined according to, for example, the cross-
validation method.21 The absolute value of the loading,pak,
explains how much the variablek contributes to theath
principal component, whereas the sign gives information as
to whether the variable is negatively or positively correlated
with the principal component.

PCA of the NIR Data Table. The final data matrixX
(28 rows× 561 variables)22 containing the NIR spectra (in
the rangeλ ) 1100-2220 nm) was submitted for PCA. The
PCA afforded a principal component model constituted by
three (a) 3) principal components. The variance explained
by the first principal component was 99.8716%. Even though
the second and the third principal components constituted
only 0.1276% (PC #2) and 0.0006% (PC #3) of the total
variance, respectively, the additional principal components
(PCs #2-3) show both clear systematic variations. An
additional principal component (PC #4) showed no such
systematic information. The three principal components, PCs
#1-3 were plotted against the time scale; the three time-
score plots are shown in Figures 5, 6, and 7, respectively.
The time-score values for the objects at reaction timesτ )
0, 1, 2, 3, 4, 6, 9, 12, 18, 24, 30, and 60 were used to estimate
smooth curves of the time-score (proportional with time-
concentration) profiles. Polynomial fit23 and cubic spline fit24

can be used for the purpose of estimating smooth curves.
The time-score profiles (Figures 5-7) were all estimated
using polynomial fitting in the present work. The time-score

profile of principal component #1 was described by a
polynomial fit of fifth degree for the intervalτ ) 0-10,
while for the rest of the cuve a third-degree fit was applied.
A similar fit was used for the time-score fit for the principal
component #2. In the case of the principal component#3, a
polynomial fit of fifth degree was used for the intervalτ )
0-10. To achieve a smooth connection between first and
second part of the curve a small part of the estimated values
of the first interval (τ ) 0-10) were used as input values

(21) Wold, S.Technometrics1978,20, 397.
(22) During the introductory principal component analysis, some few abnormal

(outlier) NIR spectra (objects) were determined: namely at “reaction time”
τ ) 5 (object #6),τ ) 10 (object #10),τ ) 11 (object #11),τ ) 15 (object
#15). Those spectra were thus removed from the data matrix (X32×561 f
X28×561) before the final principal component analysis was performed.

(23) (a) Gerald, C. F.; Wheatley, P. O.Applied Numerical Analysis, 6th ed.;
Addison-Wesley: Reading, MA, 1999; pp 238-248. (b) Using Matlab,
version 6; The MathWorks Inc.: Natick, MA, 2000; pp 13.17-13.21 and
13.31-13.39.

(24) (a) Gerald, C. F.; Wheatley, P. O.Applied Numerical Analysis, 6th ed.;
Addison-Wesley: Reading, MA, 1999; pp 264-274. (b) Using Matlab,
version 6; The MathWorks Inc.: Natick, MA, 2000; pp 12.11-12.13, and
13.31-13.39.

Figure 4. Schematic explanation of the PCA method with three descriptor variables (x1, x2, x3) and two principal components
(t1, t2).

xik ) xjk + ∑
a ) 1

A

tia pak
T + εik (7)

Figure 5. Polynomial curve fit of the PC #1 score values versus
reaction time. For the polynomial curve fitting of the smoothly
drawn curve, a selection of time-score values were used,
namely the objects at reaction timesτ ) 0, 1, 2, 3, 4, 6, 9, 12,
18, 24, 30, and 60, and these are indicated as black-filled circles
on the smoothed curve. For the time rangeτ ) 0-10 a
polynomial fit of fifth degree was used. For the time rangeτ )
10-60 a polynomial fit of third degree was used. This principal
component represents changes in the concentration of ethyl-
benzene 1 during the course of the reaction.
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together with the actual values in the regionτ ) 10-60.
For this region a third-degree polynomial curve fit was
applied.

The idea behind this data treatment and fitting may be
summarized by the statement that each of the principal
components should portray one chemical characteristic,
which is different from the information portrayed in the other
principal components. Nevertheless, each of the various
principal components may contain further chemical or
physical information, however, that covariates with the
chemical composition of the reaction mixture.

At this stage of the data analysis, it is necessary to make
an attempt to interpret the loadings from PCA. Figure 8
displays the principal component loading spectra (magenta

line) for PC #1 (bottom row of subplots), PC #2 (center row
of subplots) and PC #3 (top row of sub plots). The loading
spectra PCs #1-3 are plotted together with the NIR spectra
of ethylbenzene1 (blue line), acetophenone2 (red line),
benzoic acid3 (green line), and ethyl acetate4 (black line).
The NIR spectra of compounds1-3 were recorded as
solutions (1 M) in ethyl acetate4. The contribution of ethyl
acetate4 was removed from each of the three compound
spectra. To simplify the comparison of the peaks of the
loading spectrum and the NIR spectrum of each compound,
the loading spectra were scaled assf× pa. The scaling factor
sf is estimated according to eq 8 for each of the twelve
subplot of Figure 8.

The loadings can be utilized to discern the various
chemical or physical effects that are present in the different
principal components. A monitored reaction, such as the
imagined reaction of Scheme 1, can be considered as a closed
system. The major variation that appears in such systems is
the mutual concentration variations of the various reacting
species and the products thereof.

Despite the complexity of NIR spectra it is possible by
means of the wavelength-loading spectra achieved from the
PCA to discern the wavelengths that can be assigned to the
different functional groups found in the substrate1, the
intermediate2, and in the final product3. The substrate,1,
is expected to show specific absorption bands for CH3 and
CH2 that are not present in the other two compounds.
Likewise, the ketone carbonyl CdO group is only present
in the intermediate2, and the carboxylic acid-COOH group
is only present in the target product3 of the oxidation
reaction. In addition, the ester carbonyl present in the solvent
is expected to be found in the principal component, explain-
ing the majority of the variance of the spectral data matrix
X. Examining the loading spectra, some of the specific
absorption bands of the functional groups can be assigned,
if with some difficulty.

The PC #1 loading spectrum reveals an inverted NIR
spectrum of ethyl acetate4, see subplot in the lower right
corner, Figure 8. This is not very surprising, since ethyl
acetate4 is the compound that is present in the largest
quantity. Interestingly, plotting the time-PC #1 score reveals
a profile similar to the consumption of ethyl benzene1
(Figure 5). This observation is difficult to explain but can
reflect some sorts of solvatization or hydrogen bonds toward
ethyl benzene (or benzoic acid?). In the following we will
try to use this principal component score-time plot in an
attempt to describe the consumption of ethyl benzene. Ethyl
benzene can moreover be calculated by means of eq 6 if the
two other principal components (PC #2 and PC #3) can be
assigned to the two compounds benzoic acid3 and acetophe-
none2, respectively.

The PC #2 loading spectrum clearly possesses features
that assign the principal component to benzoic acid3, see

Figure 6. Polynomial curve fit of the PC #2 score values versus
reaction time. For the polynomial curve fitting of the smoothly
drawn curve, a selection of time-score values were used,
namely the objects at reaction timesτ ) 0, 1, 2, 3, 4, 6, 9, 12,
18, 24, 30, and 60, and these are indicated as black-filled circles
on the smoothed curve. For the time rangeτ ) 0-10 a
polynomial fit of fifth degree was used. For the time rangeτ )
10-60 a polynomial fit of third degree was used This principal
component represents changes in the concentration of benzoic
acid 3 during the course of the reaction.

Figure 7. Polynomial curve fit of the PC #3 score values versus
reaction time. For the polynomial curve fitting of the smoothly
drawn curve, a selection of time-score values were used,
namely the objects at reaction timesτ ) 0, 1, 2, 3, 4, 6, 9, 12,
18, 24, 30, and 60, and these are indicated as black-filled circles
on the smoothed curve. For the time rangeτ ) 0-10 a
polynomial fit of fifth degree was used. For the time rangeτ )
10-60 a polynomial fit of third degree was used. This principal
component represents changes in the concentration of acetophe-
none 2 during the course of the reaction.

sf )
max (Absj) - min (Absj)

max (pa) - min (pa)
,

{j ) 1, ..., 4 (compounds1-4)
a ) 1, ..., 3 (principal components)

(8)
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the third subplot from left of the center row of Figure 8.
The carboxylic acid group,-C(dO)OH, has a second
overtone absorption band at 1890-1920 nm. The ridge at
the wavelength region (1300 nm) 1500-1700 nm, the
specific peak at 1680 nm, and spectrum profile in the region
1700-2100 nm fit well with the NIR spectrum of benzoic
acid.

Comparison of the PC #3 loading spectrum with the NIR
spectrum for each of the compound1-4 reveals several
similar absorption bands between PC #3 loading and the NIR
spectrum of acetophenone2, see second subplot from left
of the top row, Figure 8. The region 1700-2100 of the PC
#3 loading spectrum corresponds however to the inverted
acetophenone spectrum region. The time-score PC #3 plot
(Figure 7) shows a profile very similar to the concentration
profile of acetophenone in the reaction of Scheme 2.

Converting the Time-Score Curve Profile to a Time-
Concentration Reaction Profile.The author has previously
disclosed methods for (i) how the reaction time-score curve
profile can be used to determine the endpoint of a reaction,15

and (ii) how to estimate a plot of the reaction time-
concentration profile for the final product on the basis of
the time-scores.16 These methods will for the sake of
completeness be applied here to indicate an approximate end-
point and to estimate the concentration profiles for the
substrate, the final product, and for the intermediate.

The “end-point” of any reaction monitored using NIR
spectroscopy can be easily determined by only one experi-
ment. The reaction is conducted over an extended reaction
time, to ensure that the reaction is brought to completeness.
The spectral data matrixX is submitted for PCA, to estimate
the scores and loadings. The score values are represented in
a time-score plot. The endpoint is determined in the region
where the time-score profile approaches a horizontal line.
The end-point is more exactly determined at the point on
the time-score plot where the differences among several
successive score values becomes insignificant. Applying this
to the imagined oxidation process, the approximated reaction
time is determined to be at reaction timeτ ) 60.

Using the start point for score-concentrationst1(o), [1]o
and the end pointt1(60), [1]60, a simple regression model, eq
9, describing the concentration of ethylbenzene1 as a
function of the score value can be achieved. The scorest1
are given by PC #1. The coefficientR is the regression
coefficient for the regression line andRo is the intercept.
The model, eq 9, can then be used to estimate the reaction
time-concentration profile based on the reaction time-score
profile of Figure 5.

In the same way, a model for the product benzoic acid3
can be achieved, eq 10. For this model development, the
start concentration of benzoic acid is [3]o ) 0 with a final
concentration of [3]60 ≈ 1. The score values are for PC #

Figure 8. The graphic shows the NIR spectra of ethylbenzene 1 (blue line), aceophenone 2 (red line), benzoic acid 3 (green line),
and ethyl acetate 4 (black line). The NIR spectra of the compounds 1-3 were recorded as solutions (1 M) in ethyl acetate 4. The
contribution of ethyl acetate was removed from each of the three compound spectra. Together with the compound and solvent
spectra 1-4, the principal component loading spectra (magenta line) for PC #1 (row 1 from the bottom), PC #2 (row 2), and
PC #3 (row 3) are plotted.
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To construct a graphical representation of the time-
concentration profile for the intermediate acetophenone2 on
the basis of the time-score plot, two similar reactions must
be carried out. The first one is conducted and analyzed as
described above. From the time-score plot, the time and
score pair for where the intermediate shows a maximum is
determined. This will be used as the “end-point.” The second
experimental run is “quenched” at approximately the reaction

time where the concentration of the intermediate shows a
maximum, and the concentration of the intermediate is
determined, for example, by means of a chromatographic
method. For the oxidation process (Scheme 2), the interme-
diate (score#3) shows a maximum at approximately time
τ ) 8. For the intermediate2, the two data pointst3(o),
[2]o ) [-0.0317, 0] andt3(τ)8), [2]8 ) [0.0187, 0.0901] is
used in eq 11.

Using the eq 9-11, the concentration profiles of the three
compounds1, 2, and3 can be viewed. The intermediate
acetophenone2 is shown by the by red-filled circles, ethyl
benzene1 by the blue-filled circles, and benzoic acid3 by
the green-filled circles.

The predictive capacities of the models of eqs 9-11 are
shown in Figure 10. In this figure, the measured values are
plotted against the predicted ones for (a) the substrate ethyl
benzene1, (b) the intermediate acetophenone2, and (c) the
final product benzoic acid3 of the imagined oxidation
reaction.

As Figure 10a and c shows, the estimated simple linear
regression explains the concentration profiles for ethyl
benzene1 and benzoic acid3 superbly. For the intermediate
acetophenone2, the model is somewhat aberrant for the
region where the concentration increases. For that region
(indicated with black circles around the red filled circles),
the model predicts a too-low concentration. For the rest of
the samples throughout the course of the reaction, the model
shows a very good predictive ability.

Discussion and Conclusions
It has been shown that by means of a series of near-IR

spectra, recorded during the course of a (imagined) synthetic
reaction, it is possible to predict the current reaction profiles,
that is, the 2D plot of reaction time versus concentration, of
the substrate, the intermediate, and of the final product,
respectively. The near-IR spectra were analyzed using PCA
to achieve the scores and the loadings. By means of the score
values for each of the significant principal components, it
was possible to portray the reaction profile for each of the
compounds that participates in the reaction. A simple linear
regression model was established from only two samples
using their scores (asx’s) with their corresponding quanti-

Figure 9. Concentration-time profiles for each of the com-
pounds ethylbenzene 1, acetophenone 2, and benzoic acid 3.
The profiles are plotted on the basis of the scores estimated by
PCA of the near-IR data matrix. Simple regression models are
then used to transform the score values into concentration
values, that in the present plot are plotted versus the reaction
times.

Figure 10. Correlation of actual values and predicted values for models describing the concentration of: (a) the substrate ethyl
benzene 1, (b) the intermediate acetophenone 2, and (c) the final product benzoic acid 3 of the imagined oxidation reaction. The
product statistics: R2 ) 0.9950 and slope) 0.9044 for ethyl benzene;R2 ) 0.7080 and slope) 0.8964 for acetophenone, andR2 )
0.9997 and slope) 0.9973 for benzoic acid shows a good predictive ability of the derived models. Regarding the plot (b), the filled
red circles marked with a black circle show a marked deviation from the other points. These points represent the first eight NIR
recordings of the reaction. The model predicts a lower concentration than the actual values for these points. For the rest of the
measurements, an excellent agreement between the measured and the predicted values is observed.

[1]τ ) R0 + R × t1 {τ t1 [1]
0 -6.1806 1.00
60 -7.4036 0.00

w

[1]τ ) 6.0536+ 0.8177× t1 (9)

[3]τ ) â0 + â × t2 {τ t2 [3]
0 -0.4338 0.00
60 0.4877 1.00

w

[3]τ ) 0.4708+ 1.0852× t2 (10)

[2]τ ) γ0 + γ × t3 {τ t3 [2]
0 -0.0317 0.0000
8 0.0187 0.0901

w

[2]τ ) 0.0567+ 1.7905× t3 (11)
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tatively measured content of product (asy’s) in a small
“calibration set”. This model was used to recalculate the
reaction time-score reaction profile into a reaction time-
concentration reaction profile.

PCA was used in this study for the analysis of the NIR
spectral data matrixX. As an alternative, the singular value
decomposition (SVD) method was utilized for the analysis
of the NIR data. SVD25 function released with Matlab 6.5.1,26

provided similar results to those acquired by the PCA
method.

Experimental Section
Preparation of Samples.The samples for the imagined

oxidation process of Scheme 2 were prepared from com-
mercial samples of ethylbenzene, acetophenone, and benzoic
acid, respectively. Commercial samples were used directly
without any purification prior to use. The samples were
weighed on an analytical laboratory balance, the quantities
given in Table 1. The samples were diluted with ethyl acetate
(100 mL) in measurement flasks.

NIR Spectral Recording.The near-infrared (NIR) spectra
(λ 1100-2498 nm,∆λ ) 2 nm) were recorded by means of
a NIR System model 6500 spectrometer equipped with a
Optiprobe system fiber optical probe (a transmittance probe)

with total path length ofL ) 2 mm. The upper region of
each spectrum was removed due to noise and absorption by
the fiber optics. The final spectrum from each recording is
constituted by the wavelength rangeλ 1100-2220 nm, with
a resolution of∆λ ) 2 nm, that gives 561 absorption values
in total for each spectrum.

Multivariate Calculations, Curve Fitting, and Graph-
ics. The calculations of the principal components by means
of PCA, the curve fitting using polynomial regression23 and
spline,24 and the graphical representations27 of the calculated
results were performed by using in-house developed routines
for MATLAB, version 6.1.
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